IITSOLARPOWERSYSTEMS 5a3b982c4b27a00860beef95 False 139 16

IIT Solar Power Systems


We are solar system integrator offering solar power technology solutions for residence ,commercial,industry,agriculture,farmhouse, various types of Solarn LED Lanterns & Solar Mobile Chargers,solar Water Heater for residence,commercial

Latest update

Solar energy is secured energy in the world , planet friendly Electricity generation and consumption
view all updates 1523599876


Solar Grid tied system
Solar Grid tied system INR 0 INR 0 Solar Grid tied ,Rooftop solar systems help customers become self-sufficient in power generation, while also allowing them to feed-in excess solar power to the local electricity grid. True 1513855639
Solar Water Heater
Solar Water Heater INR 0 INR 0 To meet the various requirements of the customers, we are involved in offering a wide assortment of Solar Water Heater. Salient Features of Solar Water Heating System Solar Hot Water System turns cold water into hot water with the help of sun’s rays. Around 60 deg. – 80 deg. C temperature can be attained depending on solar radiation, weather conditions and solar collector system efficiency Hot water for homes, hostels, hotels, hospitals, restaurants, dairies, industries etc. Can be installed on roof-tops, building terrace and open ground where there is no shading, south orientation of collectors and over-head tank above SWH system SWH system generates hot water on clear sunny days (maximum), partially clouded (moderate) but not in rainy or heavy overcast day Only soft and potable water can be used Stainless Steel is used for small tanks whereas Mild Steel tanks with anticorrosion coating inside are used for large tanks Solar water heaters (SWHs) of 100-300 litres capacity are suited for domestic application. Larger systems can be used in restaurants, guest houses, hotels, hospitals, industries etc. Fuel Savings : A 100 litres capacity SWH can replace an electric geyser for residential use and saves 1500 units of electricity annually. Avoided uitility cost on generation The use of 1000 SWHs of 100 litres capacity each can contribute to a peak load shaving of 1 MW. Environmental benefits A SWH of 100 litres capacity can prevent emission of 1.5 tonnes of carbondioxide per year. Life : 15-20 years Approximate cost : Rs.15000- 20,000 for a 100 litres capacity system and Rs.110-150 per installed litre for higher capacity systems Payback period : 3-4 years when electricity is replaced 4-5 years when furnace oil is replaced 5-6 years when coal is replaced True 1513855778
Solar Home system-Off grid
Solar Home system-Off grid INR 0 INR 0 Solar rooftop systems can either connect to the grid, or they can be ‘off-grid’ with battery storage. The beauty of an off-grid solar system , is that it provides the most reliable power possible, making you independent of power cuts, without the hassle of a diesel generator or battery inverter system. Features: Standard quality Corrosion resistant User friendly True 1513855689
Solar Basics
Solar Basics INR 0 INR 0 Solar System Basics - How Solar Power Works! The purpose of the information on this page to provide a basic understanding of the major components in a basic solar power system, and to help you identify and select the correct size components for your system. Basic System Components Detailed Component Description Solar Regulator Sizing Information Sample Sizing Calculation Basic System Components The following diagram shows the major components in a typical basic solar power system. The solar panel converts sunlight into DC electricity to charge the battery. This DC electricity is fed to the battery via a solar regulator which ensures the battery is charged properly and not damaged. DC appliances can be powered directly from the battery, but AC appliances require an inverter to convert the DC electricity into 240 Volt AC power. Some DC appliances can be connected to the regulator to take advantage of the Low Voltage Disconnect and protect your battery. Detailed Component Description Solar Panels Solar panels are classified according to their rated power output in Watts. This rating is the amount of power the solar panel would be expected to produce in 1 peak sun hour. Different geographical locations receive different quantities of average peak sun hours per day. In Australia, the figures range from as low as 3 in Tasmania to over 6 in areas of QLD, NT and WA. As an example, in areas of the Hunter Valley in NSW, the yearly average is around 5.6. The monthly figures for this area range from below 4.0 in June to above 6.5 in December. This means that an 80W solar panel would ideally produce around 320W per day in June and around 520W per day in December, but based on the average figure of 5.6, it would produce a yearly average of around 450W per day....without taking losses into account. Solar panels can be wired in series or in parallel to increase voltage or current respectively. The rated terminal voltage of a 12 Volt solar panel is usually around 17.0 Volts, but through the use of a regulator, this voltage is reduced to around 13 to 15 Volts as required for battery charging. Solar panel output is affected by the cell operating temperature. Panels are rated at a nominal temperature of 25 degrees Celcius. The output of a typical solar panel can be expected to vary by 2.5% for every 5 degrees variation in temperature. As the temperature increases, the output decreases. With this in mind, it is worth noting that, if the panels are very cool due to cloud cover, and the sun bursts through the cloud, it is possible to exceed the rated output of the panel. Keep this in mind when sizing your solar regulator. Solar Regulators The purpose of solar regulators, or charge controllers as they are also called, is to regulate the current from the solar panels to prevent the batteries from overcharging. Overcharging causes gassing and loss of electrolyte resulting in damage to the batteries. A solar regulator is used to sense when the batteries are fully charged and to stop, or decrease, the amount of current flowing to the battery. Most solar regulators also include a Low Voltage Disconnect feature, which will switch off the supply to the load if the battery voltage falls below the cut-off voltage. This prevents the battery from permanent damage and reduced life expectancy. A solar regulator also prevents the battery from backfeeding into the solar panel at night and, hence, flattening the battery. Solar regulators are rated by the amount of current they can receive from the solar panels. See section below for information on correctly sizing a solar regulator. Inverters An inverter is a device which converts the DC power in a battery to 240V AC electricity. Inverters come in two basic output designs, pure sine wave and modified sine wave (squarewave). Most AC devices will work fine on the modified sinewave inverter, but there are some exceptions. Devices such as laser printers can be damaged when run on modified sinewave power. Motors and power supplies usually run warmer and less efficiently, and some things, like fans, amplifiers, and cheap fluorescent lights, give off an audible buzz on modified sinewave power. However, modified sinewave inverters make the conversion from DC to AC very efficiently, and they are relatively inexpensive. Pure sine wave inverters provide AC power that is virtually identical to, and often cleaner than, power from the grid. Inverters are generally rated by the amount of AC power they can supply continuously. Manufacturers generally also provide 5 second and 1/2 hour surge figures. The surge figures give an idea of how much power can be supplied by the inverter for 5 seconds and 1/2 an hour before the inverter's overload protection trips and cuts the power. Deep Cycle Solar Batteries Deep cycle batteries that are used in solar power systems are designed to be discharged over a long period of time (e.g. 100 hours) and recharged hundreds or thousands of times, unlike conventional car batteries which are designed to provide a large amount of current for a short amount of time. To ensure long battery life, deep cycle batteries should not be discharged beyond 70% of their capacity. i.e 30 % capacity remaining. Discharging beyond this level will significantly reduce the life of the batteries. Deep cycle batteries are rated in Ampere Hours (Ah). This rating also includes a discharge rate, usually at 20 or 100 hours. This rating specifies the amount of current in Amps that the battery can supply over the specified number of hours. As an example, a battery rated at 120Ah at the 100 hour rate can supply a total of 120A over a period of 100 hours. This would equate to 1.2A per hour. Due to internal heating at higher discharge rates, the same battery could supply 110Ah at the 20 hour rate, or 5.5A per hour for 20 hours. In practice, this battery could run a 60W 12VDC TV for over 20 hours before being completely drained. There are many factors that can affect the performance and life of a battery bank. It is highly recommended that you speak with an experienced solar power system installer or solar battery provider prior to making any significant battery purchase. Solar Regulator Sizing Information A solar regulator must be able to handle the maximum current that can be produced by the solar panels. Reflected sunlight and specific temperature conditions can increase the output current of a solar panel by as much as 25% above it's rated output current. The solar regulator must be sized to handle the increased current. Solar regulators often short the solar panel input when regulating. This does not damage the solar panel, but it does mean that the solar regulator must be sized to handle 125% of the solar panel's rated short circuit current. Example: A BP Solar 80W solar panel has a rated output current of 4.55 Amps and a rated short circuit current of 4.8 Amps. Minimum solar regulator size for a single BP Solar 80W panel would be: 4.8 Amps x 1.25 = 6 Amps. It is recommended that the regulator selected is even slightly larger than this figure to ensure that it is not constantly operating at 100% of its rating, particularly in regions with higher ambient temperatures. Sample Sizing Calculation In order for you to size the system correctly, you need to note the power rating of each appliance that will be drawing power from the system. For this example, we will calculate the power requirements for a campervan with: 2 x 15W 12VDC Fluorescent Lights 1 x 60W 12VDC Water Pump 1 x 48W 12VDC Fridge 1 x 50W 240VAC TV 1 x 600W 240VAC Microwave (Note that a 600W microwave will consume approximately 900W of power) 1. Calculate Loads Calculate total DC and AC loads: DC Loads Lighting - 2 x 15W DC Lights - each used 2 hours per day = 60Wh/day Pump - 1 x 60W DC Pump - used 1/4 hour per day = 15Wh/day Fridge - 1 x 48W Fridge - runs 8 hours per day = 384Wh/day Total for DC Loads = 459Wh/day AC Loads Television - 1 x 50W - used 2 hours per day = 100Wh/day Microwave - 1 x 900W - used 15 min per day = 225Wh/day Total for AC Loads = 325Wh/day Allowing for inverter efficiency of 85% = 382Wh per day (ie. 325 / 0.85) Total for AC and DC Loads = 841Wh per day 2. Calculate Required Solar Input In Central to Northern NSW expect a usable average of around 5 peak sun hours per day. Required solar panel input = (841Wh / 5h) * 1.4 = 235W Note: The 1.4 used in this formula is a factor we have found that can be used to simplify the calculations for basic systems. To ensure that adequate power is produced in the winter months, use a figure of around 4.0 to 4.5 peak sun hours per day instead of 5. 3. Select Solar Panels Select solar panels to provide a minimum of 235W. Always best to go bigger if possible: 2 x 123W solar panels chosen which, when connected in parallel, will provide 246W or 14.32 Amps. 4. Select Solar Regulators The rated short circuit current of the 123W solar panels is 8.1 Amps each, giving a total of 16.2 Amps. Select a solar regulator that is more than capable of handling the total short circuit current: 16.2 x 1.25 = 20.25 Amps Steca 30Amp regulator chosen. Note that, as described in the notes above, you must allow 25% extra capacity in the regulator rating as solar panels can exceed their rated output in particular cool sunny conditions. A 30A regulator will allow for an additional panel in the future. 5. Select Inverter Select an inverter that is more than capable of supplying the maximum anticipated combined AC load required. In this example, maximum load would occur if the microwave and TV were running at the same time. Load in this case would be 900W + 50W = 950W. Note that this calculation assumes that the inverter selected has a suitable surge rating to cope with the start-up surges of the microwave or other loads. A 1000W inverter would appear to be suitable, but a 1200W - 1500W inverter would be recommended. 1200Watt pure sine wave inverter chosen. Note: A pure sinewave inverter is the preferred choice, but if the budget is tight, a modified sine wave unit could be used. 6. Select Battery Select a battery, or a matched combination of batteries, that is capable of supplying the total power usage without being discharged more than 70%. In most cases it is recommended that the batteries are sized such that they have around 3 to 4 days back-up capacity. This allows for days with low sunlight and reduces the daily depth of discharge resulting in longer battery life. With 3 days storage capacity, the battery sizing would be as follows: Ah Required = (841Wh * 3 / 12V) / 0.7 * 1.1 = 330Ah. Note: The 1.1 is used in this formula as batteries are generally only about 90% efficient. Notes: The appliance ratings used in the above examples may not be accurate. They have been used for example purposes only. Check the ratings on your appliances before performing any calculations. True 1514471436
Solar Water Pump
Solar Water Pump INR 0 INR 0 solar water pumping systems provide reliable water supply at low costs. The unique beauty of solar water pumping system is that it can work with any existing AC-powered submersible pump – you can just retrofit your existing pump and immediately enjoy more reliable water supply. systems are designed to power pumps from 1HP to 10HP, for both single phase and 3-phase. Features: Excellent efficiency Longer life High grade material True 1513855733
Solar Fencing System
Solar Fencing System INR 0 INR 0 Enriched by our vast industrial experience in this business, we are involved in offering an enormous quality range of Solar Fencing System (Solar Fencing for Farm House / Forest/ Agriculture/ Security). Features: High grade material Easy to install Robust design Agricultural Solar Fencing We are one of the leading Suppliers of Agriculture Solar Fencing System. This is one of the best method for protecting crops and property from domestic and wild animal. It supplies a low amount of electric current to those entering the fenced area. This fence system enables the control of animals by giving them a short, sharp but safe shock, which is sufficiently memorable that they never forget it. Residential Solar Fencing: Provide complete security for residential houses. This is one of the best method of protecting the property . Industrial Solar Fencing Industrial Solar fencing System is the most complete form of security to factories and Industries. Forest Solar Fencing Forest Solar Fencing System is designed to protect villages, communities, resorts located in or near forest areas and stop wild animals from straying into agriculture fields and farmlands bordering forests True 1513855859
Solar Power Plants
Solar Power Plants INR 0 INR 0 The India Government is committed to the installation of 100 giga-watts of ground-mounted solar power plants by 2022. delivering high-quality, MW-scale solar power plants, If you are an investor wishing to invest in a MW-scale solar power plant, please provide your details in the contact True 1514484296
Solar Street Light
Solar Street Light INR 0 INR 0 Solar street lights are raised light sources which are powered by photovoltaic panels generally mounted on the lighting structure or integrated in the pole itself. The photovoltaic panels charge a rechargeable battery, which powers a fluorescent or LED lamp during the night. True 1514556867
View All

Our timings

[IS_BIZ_OPEN] Mon: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Tue: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Wed: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Thu: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Fri: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Sat: 10:00 AM  -  7:00 PM
[IS_BIZ_OPEN] Sun: Closed  -  Closed


80/50c, Royakota Road, Om Complex, , 2 ND Floor, Opposite​ Canara Bank Atm, -635109, krishnagiri District, Tamil Nadu
+91 8071270346  or   or   
Please keep or 0 before the
number when you dial.
Share Tweet



12.7256572 77.8324428 IIT Solar Power Systems 80/50c, Royakota Road, Om Complex, , 2 ND Floor, Opposite​ Canara Bank Atm, -635109, krishnagiri District, Tamil Nadu